
Exploring Vertex and Edge Weighted Graphs

By Kenny Yu

1 Introduction

In graph theory, the traditional weighted graph consists of weights on edges only. Whereas weighing

edges has many practical applications, weighing vertices as well also serve many purposes. In

this paper, we will explore properties of a doubly-weighted graph—a graph in which both edges

and vertices are weighted—and how they differ from an edge-only-weighted graph. Using these

properties, we will explore and solve a problem by modeling it with a doubly-weighted graph.

2 Definitions

To begin our discussion of weighted graphs, we will define the notion of a doubly-weighted graph, a

vertex-weighted graph, and an edge-weighted graph.

Doubly-Weighted Graph. Define a doubly-weighted graph G = (V (G), ωV , E(G), ωE). The set

V (G) is called the vertex set of G, and elements of this set are called vertices. The vertex weight

function ωV : V (G) → R maps all vertices onto the set of real numbers. We denote the weight of

a vertex v as ωV (v). The set E(G) is called the edge set of G, and elements of this set are called

edges. Each edge ei is defined by two vertices, vj and vk, such that ei = vjvk. We say that this

edge ei is incident to vertices vi and vj , and we denote this by ei α vj and ei α vk respectively. Let

δ(v) be the degree of vertex v—that is the number of edges incident to v. The edge weight function

ωE : E(G)→ R maps all edges onto the set of real numbers. We denote the weight of an edge e as

ωE(e).

Vertex-Weighted Graph. Let graph G = (V (G), ωV , E(G), ωE), and let ωE be defined such

that for all edges e in E(G), ωE(e) = 0. Since all the weights of the edges are zero, it is as if the

edges are not weighted at all. Thus we say that graph G is a vertex-weighted graph and its edge

weights are not counted when considering weights.

1



Edge-Weighted Graph. Let graph G = (V (G), ωV , E(G), ωE), and let ωV be defined such that

for all vertices v in V (G), vw(v) = 0. Since all the weights of the vertices are zero, it is as if the

vertices are not weighted at all. Thus we say that graph G is an edge-weighted graph and its vertex

weights are not counted when considering weights.

3 Reducible and Irreducible Problems

3.1 Transforming a Doubly-Weighted Graph

Before we explore the aforementioned problem, we will examine properties of a doubly-weighted

graph. Namely, we will show how all doubly-weighted graphs can be transformed into an equiv-

alent directed edge-weighted graph. Different problems that optimize different sums or products,

however, necessitate the use of doubly-weighted graphs, and we will call these problems irreducible.

12

11

15

10

16

14

A H2L

B H3LC H4L

D H5L

E H7L

F H6L

Figure 1: Graph G

To see that every doubly-weighted is equivalent to a directed edge-weighted graph, consider

vertex B on the graph G in Figure 1. To remove the weight on vertex B, we construct a new graph

G′. Let G′ be identical to G, except vertex B is now replaced with two new vertices B′ and B′′.

Construct a directed edge from B′ to B′′ with weight ωV (B). This edge will be analogous to the

2



vertex weight in G. Change all edges incident that were incident to B into directed edges leading

into B′, and let weights of these edges match their counterparts in the original graph G. Now create

edges between B′′ and the corresponding vertices adjacent to B in the original graph G. Thus all

incoming edges that used to enter B enter B′ and all outgoing edges that used to leave B leave

through B′′. All other edges are now directed edges going in both ways. Let the weights of these

edges match their counterpart in G. Figure 2 shows this construction. This transformed graph is

12

1116

12

11

15

10

16

15

14

3

10

14

B''

A H2L

C H4LD H5L

B'

E H7L
F H6L

Figure 2: Graph G’

equivalent to the original graph in that the weights of paths and walks are preserved. All walks that

enter B′ must contain edge B′B′′ and leave through B′′, and thus must have ωE(B′B′′) = ωV (B)

in the final weight. For example, consider the walk C,B,A,B,D on graph G. The weight of this

walk can be found through the sum

ωV (C) +ωE(CB) +ωV (B) +ωE(BA) +ωV (A) +ωE(AB) +ωV (B) +ωE(BD) +ωV (D) = 68. (1)

On graph G′, the equivalent walk would be C,B′, B′′, A,B′, B′′, D. The weight of this walk can

be found by replacing in equation (1) each ωE(BX) with ωE(B′′X), ωE(XB) with ωE(XB′), and

ωV (B) with ew(B′B′′) for all vertices X. Thus the weight of the equivalent walk in G′ is

ωV (C)+ωE(CB′)+ωE(B′B′′)+ωE(B′′A)+ωV (A)+ωE(AB′)+ωE(B′B′′)+ωE(B′′D)+ωV (D) = 68.
3



If we use this algorithm on each of the remaining vertices, we will eventually get an equivalent

directed edge-weighted graph with no weighted vertices. Thus all doubly-weighted graphs can be

transformed into an equivalent directed edge-weighted graph.

3.2 Reducible and Irreducible Problems.

In the previous section, when we transformed the doubly-weighted graph into a directed edge-

weighted graph, we noted that this transformation preserves the weights of walks and paths. Thus

the problem of finding the shortest weighted path from a vertex v to a vertex u can be reduced to a

simple directed edge-weighted problem that can be easily solved using Dijkstra’s Algorithm. From

this observation, we wonder what other problems can be reduced to an edge-weighted problem and

do not need to be modeled using doubly-weighted graphs. From equation (1), we see that the total

weight of the walk is

ωV (C) + ωE(CB) + ωV (B) + ωE(BA) + ωV (A) + ωE(AB) + ωV (B) + ωE(BD) + ωV (D)

= ωV (C) + ωE(CB) + 2ωV (B) + 2ωE(BA) + ωV (A) + ωE(BD) + ωV (D),

which is a linear combination of the vertex weights and edge weights. From this observation, we

can conjecture what form a reducible problem takes.

Definition: Problem. Given a graph G, a problem is an expression involving the weights of

vertices and edges. To solve a problem, one must optimize this expression.

Definition: Reducible. Given a graph G, a problem for doubly-weighted graphs is reducible if

it can be solved using algorithms strictly based on directed or non-directed edge-weighted graphs.

A problem that is not reducible is said to be irreducible.

Conjecture 3.1. A problem for doubly-weighted graph G is reducible if and only if the problem

has an expression of the form

c1ωV (v1) + c2ωV (v2) + · · ·+ cnωV (vn) + cn+1ωE(e1) + cn+1ωE(e2) + · · ·+ cn+mωE(em)

where n and m are the number of vertices and edges in V (G) and E(G) respectively, ck ∈ Z for

all integers 1 ≤ k ≤ n + m, vi ∈ V (G) for all integers 1 ≤ i ≤ n, and ej ∈ E(G) for all integers

1 ≤ j ≤ m.
4



4 Traffic Grid Problem

Consider the following problem that we will model using doubly-weighted graphs:

Traffic Grid Problem In a town with m intersections spread across n roads that each connect

two intersections, there are no traffic lights. Each intersection has an associated danger number that

quantifies the danger level of an intersection, and each road has an associated congestion number

that quantifies the amount of traffic on that road. The city planners wish to place l traffic lights

at intersections across the city (l is less than or equal to the number of intersections). Placing

a traffic light will make the intersection safer and thus decrease the intersection’s danger number

by a real number a that is less than the minimum danger number. However, the traffic light will

increase the amount of traffic leading into that intersection and thus raise the congestion number

of each road leading into that intersection by a real number b. How can the city minimize the sum

of the products formed by multiplying each road’s congestion number with the sum of the danger

numbers of the intersections the road connects?

To model this problem, we create a graph G where the vertex set is the set of intersections

and the edge set is the set of roads connecting these intersections. The vertex weight function maps

these vertices to the corresponding intersection’s danger number, which is a real number. The edge

weight function maps the edges to the corresponding intersection’s edge number, which is also a

real number. The question thus becomes:

Problem Given graph G as constructed above, minimize the following expression:

S =
∑

vivj∈V (G)

ωE(vivj) [ωV (vi) + ωV (vj)] .

This expression clearly does not have the form

c1ωV (v1) + c2ωV (v2) + · · ·+ cnωV (vn) + cn+1ωE(e1) + cn+1ωE(e2) + · · ·+ cn+mωE(em)

because we have products of edge weights and vertex weights. Thus from our conjecture, we can

5



conclude that this problem is irreducible and cannot be solved with algorithms strictly based on

edge-weighted graphs. To find an algorithm to solve this problem, we will solve an equivalent

problem instead. Consider graph G in Figure 3.

20

18

14

14

AH9L BH3L

DH7L

CH6L

Figure 3: Graph G

If we examine the sum S, we note an interesting observation:

S =
∑

vivj∈V (G)

ωE(vivj) [ωV (vi) + ωV (vj)]

= ωE(AB)[ωV (A) + ωV (B)] + ωE(BD)[ωV (B) + ωV (D)] + ωE(CD)[ωV (C) + ωV (D)]

+ωE(BC)[ωV (B) + ωV (C)]

= ωV (A)[ωE(AB)] + ωV (B)[ωE(BC) + ωE(BD)] + ωV (C)[ωE(CB) + ωE(CD)]

+ωV (D)[ωE(DB) + ωE(DC)]

=
∑

v∈V (G)

ωV (v)
∑
e α v

e∈E(G)

ωE(e)

 .

Thus the sum of the products formed by multiplying each edge weight with the sum of the incident

vertex weights is equal to the sum of the products formed by multiply each vertex weight with the

sum of the incident edge weights. Therefore we have the following theorem:

Theorem 4.1. Given a doubly-weighted graph G,

∑
vivj∈V (G)

ωE(vivj) [ωV (vi) + ωV (vj)] =
∑

v∈V (G)

ωV (v)
∑
e α v

e∈E(G)

ωE(e)

 .

Proof. Consider all ordered pairs (ei, vk) ∈ G formed by edges ei ∈ E(G) and vertices vk ∈6



V (G) where ei α vk. Define the weight product of such an ordered pair (ei, vk) to be the prod-

uct ωE(ei)ωV (vk).

Consider each edge ei. Each ei is incident to exactly two other vertices, call them ui1 and

ui2. Thus ei = ui1ui2 and is in exactly two ordered pairs and thus two weight products. Consider

the sum of all weight products Q, and let m be the number of edges in E(G). Then:

Q =
∑

(ei,vk)∈G

ωE(ei)ωV (vk)

= ωE(e1)ωV (u11) + ωE(e1)ωV (u12) + ωE(e2)ωV (u21) + ωE(e2)ωV (u22)

+ · · ·+ ωE(em)ωV (um1) + ωE(em)ωV (um2)

= ωE(e1)[ωV (u11) + ωV (u12)] + · · ·+ ωE(em)[ωV (um1) + ωV (um2)]

= ωE(u11u12)[ωV (u11) + ωV (u12)] + · · ·+ ωE(um1um2)[ωV (um1) + ωV (um2)]

=
∑

vivj∈V (G)

ωE(vivj) [ωV (vi) + ωV (vj)] .

Now consider each vertex vk. Let δ(vk) denote the degree of vertex vk. Each vertex vk is

incident to exactly δ(vk) edges, call them si1, si2, ..., siδ(vk). Therefore vk is in exactly δ(vk) ordered

pairs and thus δ(vk) weight products. Consider the sum of all the weight products, and let n be

the number of vertices in V (G). Then:

Q =
∑

(ei,vk)∈G

ωE(ei)ωV (vk)

= ωE(s11)ωV (v1) + ωE(s12)ωV (v1) + · · ·+ ωE(s1δ(v1))ωV (v1)

+ · · ·+ ωE(sn1)ωV (vn) + ωE(sn2)ωV (vn) + · · ·+ ωE(snδ(vn))ωV (vn)

= ωV (v1)[ωE(s11) + ωE(s12) + · · ·+ ωE(s1δ(v1))]

+ · · ·+ ωV (vn)[ωE(sn1) + ωE(sn2) + · · ·+ ωE(snδ(vn))]

=
∑

v∈V (G)

ωV (v)
∑
e α v

e∈E(G)

ωE(e)

 .

Combining the two equations we just derived, we have that

Q =
∑

vivj∈V (G) ωE(vivj) [ωV (vi) + ωV (vj)] =
∑

v∈V (G)

(
ωV (v)

∑
e α v

e∈E(G)
ωE(e)

)
7



as desired.

Now that we have this equality, in order to solve the Traffic Grid Problem, we need to only

minimize the value of the expression

∑
v∈V (G)

ωV (v)
∑
e α v

e∈E(G)

ωE(e)

 .

To place traffic lights into the city, we need to define a transformation L on the graph G that

represents the addition of a traffic light.

Definition: Transformation L(v) Given a graph G, define the transformation L on the graph

G given a parameter vertex v as follows:

• ωV (v) is set to the difference of its old value and a.

• For all e ∈ E(G) and e α v, ωE(e) is set to the sum of its old value and b.

Consider the following product P = ωV (v)
∑
e α v

e∈E(G)

ωE(e) and suppose we applied the trans-

formation L(v). Let T =
∑
e α v

e∈E(G)

ωE(e). Then the updated product would be:

(ωV (v)− a)
∑
e α v

e∈E(G)

(ωE(e)− b) = (ωV (v)− a)(T + bδ(v))

= ωV (v)T + bδ(v)ωV (v)− aT − abδ(v)

= P − aT + bδ(v)[ωV (v)− a].

Since a and b are constants with respect to v, and since the values P,−aT are invariants in

the sum, then these values do not matter when optimizing this product. Thus, the only expression

that we need to minimize is

δ(v)[ωV (v)− a].

We can easily find the vertex v in graph G that minimizes this product at every step with an

O(n) operation where n is the number of vertices in G. Thus, a greedy algorithm that repeatedly
8



applies the transformation L to the vertex that minimizes the product each time will minimize the

expression S.

Definition: Greedy Algorithm A greedy algorithm is an algorithm that takes the best choice

at every possible step. In the case of this problem, the best choice at every step would be to apply

the transformation L to vertex v that minimizes the expression S.

Solution to Problem: Greedy Algorithm The algorithm to solve the Traffic Grid Problem

is as follows:

1. Let the set R = {}.

2. Find a vertex v /∈ R that minimizes the expression δ(v)[ωV (v)−a]. Apply the transformation

L(v). Add v to R.

3. While |R| < l where l is the number of traffic lights alotted, repeat step (2).

Theorem 4.2. The algorithm described above solves the Traffic Grid Problem.

Proof. We will use induction the prove that this algorithm works.

Base Case. If l = 1, then applying this algorithm finds the vertex v that minimizes

δ(v)[ωV (v)−a] which then minimizes (ωV (v)−a)
∑
e α v

e∈E(G)

(ωE(e)− b), and thus minimizes the result-

ing quantity
∑

v∈V (G)

ωV (v)
∑
e α v

e∈E(G)

ωE(e)

 as desired.

Inductive Hypothesis. Assume that this algorithm works for l = r for some positive integer

r < n where n is the number of vertices. Then after applying this algorithm r times, S is minimized.

Call the resulting graph G′. Now view G′ as some arbitrary doubly-weighted graph. If we apply this

transformation one more time, this is equivalent to the base case, which we already show minimizes

S. Since S is still minimized after r + 1 transformations, then the greedy algorithm minimizes S

and thus solves the Traffic Grid Problem.

9



5 Conclusion

In this paper, we examined properties of doubly-weighted graphs and used these properties to help

us solve the Traffic Grid Problem. We constructed and analyzed the transformation of doubly-

weighted graphs into directed edge-weighted graphs, and we conjectured the necessary and sufficient

criteria in order for a problem to be reducible. We determined that the Traffic Grid Problem was

irreducible and thus could not use well-known algorithms to solve this problem. We created a

greedy algorithm after modelling the problem with a doubly-weighted graph. The fact that this

relatively complex problem was solved with a simple polynomial-time algorithm suggests that many

more difficult problems can be easily solved by using doubly-weighted graphs.

10


