
Scheme

Arithmetic expressions
Written version Scheme version

5+6+7 (+ 5 6 7)
5(6+7) (* 5 (+ 6 7))

¾ (/ 3 4) or 3/4
| -4 | (absolute value) (abs -4) -> 4

√2 (sqrt 2) -> 1.4142135623730951

√−1 = 0 + 1𝑖 (sqrt -1) -> 0+1i

23 (expt 2 3) -> 8

4.872 (sqr 4.87) -> 23.7169
Remainder when 15 is divided by 6
Also written: 15 mod 6

(remainder 15 6) -> 3

15/6 after removing the remainder

Also written: ⌊
15

6
⌋

(quotient 15 6) -> 2

Defining variables and
functions

Mathematical version Scheme version

a = 5.6 (define a 5.6)
b = 2a+3 (define b (+ (* 2 a) 3)

f(x) = x+1 (define (f x) (+ x 1))
or
(define f (lambda (x) (+ x 1)))

f(5) -> 6 (f 5) -> 6

g(x,y) = 2x + y (define (g fred harry) (+ (* 2 fred) harry))

ℎ(𝑥, 𝑦) = (2𝑥 + 𝑦)2 (define (h a ron) (sqr (+ (* 2 a) ron)))
or we can use the function g above (if we’ve
previously defined it)…
(define (h a ron) (sqr (g a ron)))

h(2,3) -> 49 (h 2 3) -> 49

Boolean datatype Scheme written version

TRUE #t or true
FALSE #f or false

Comparison operators for numbers Scheme version

> (greater than) (> 5 4) -> #t

>= (greater than or equal to) (>= 5 6) -> #f
= (equal to) (but only for numbers) (= 5 5.0) -> #t (in WeScheme)

< (less than) (< 6 7) -> #f
<= (less than or equal to) (<= 6 6) -> #t

Comparison operator for all simple
datatypes (including numbers)

Scheme version

Equal (equal? 4 4.0) -> #t (in WeScheme)
(equal? 4 4.0) -> #f (in SchemingBat)
(equal? 4 4.0) -> #f (in DrRacket)

(equal? #t #f) -> #f

Logical conjunction operators Scheme version

AND (and #t #t) -> #t
(and #f #t) -> #f
(and (= 4 4) (> 4 5)) -> #f
(and #t #t #f #t #t) -> #f

OR (or #f #t) -> #t
(or #f #f) -> #f
(or (= 4 4) (> 4 5)) -> #t
(or #f #f #f) -> #f

NOT (not (= 4 4)) -> #t

Decisions using “if”
The IF expression is a list with 4 parts:
(if test-part true-part false-part)
The test-part is an expression that must return #t or #f. For instance, these
three are valid tests:

(> 4 3)
(<= x 0)
(= x (+ 1 y))

Or more complicated ones:

(and (> x 5) (< x 10)) ; is x between 5 and 10?
(or (<= x 5) (>= x 10)) ; is x not between 5 and 10?

In fact, any expression that asks a yes/no question is a valid test.

The true-part is an expression that will be evaluated if the test-part is True, and
its answer will be what the entire if-expression returns

Likewise, the false-part will be an expression that will be used (evaluated) if the
test-part is False, and that will be the answer.

Examples:
(if (> 4 3) (+ 3 1) 18) -> 4
that’s because the test-part, (> 4 3), is true and so we evaluate the true-part
(+ 3 1) and that’s our answer

(if (= 5 6) (+ 3 1) 18) -> 18
..because the test-part, which is (= 5 6), is false, and so the false-part, which is
18 is the answer

Functions making decisions
abs(x) ; the absolute value (define (abs x)

 (if (>= x 0) ; test-part
 x ; true-part
 (* (-1 x)) ; false-part
)
)

