Scheme

Arithmetic expressions

Written version

Scheme version

5+6+7 (+5 6 7)

5(6+7) (*5 (+ 6 7))
% (/ 3 4)or3/a
| -4 | (absolute value) (abs -4) >4

V2 (sgrt 2) ->1.4142135623730951
V=1=04+1i (sqrt -1) -> 0+1i

23 (expt 2 3) ->8

4,877 (sqr 4.87) ->23.7169

Remainder when 15 is divided by 6
Also written: 15 mod 6

(remainder 156) ->3

15/6 after removing the remainder

(quotient 156) ->2

Also written: ll—:J

Defining variables and
functions

Mathematical version

Scheme version

a=5.6

(define a 5.6)

b =2a+3 (define b (+ (*2a) 3)
f(x) = x+1 (define (f x) (+x 1))

or

(define f (lambda (x) (+ x 1)))
f(5) >6 (f 5)->6

g(x,y) =2x+y

(define (g fred harry) (+ (* 2 fred) harry))

h(x,y) = (2x +y)?

(define (h aron) (sgr (+ (* 2 a) ron)))

or we can use the function g above (if we’ve
previously defined it)...

(define (h a ron) (sgr (g a ron)))

h(2,3) -> 49

(h23)->49

Boolean datatype

Scheme written version

TRUE

#t or true

FALSE

#f or false

Comparison operators for numbers

Scheme version

> (greater than) (>5 4) >#t

>= (greater than or equal to) (>= 5 6)>#f

= (equal to) (but only for numbers) (= 5 5.0)->#t (in WeScheme)
< (less than) (< 67) > #f

<= (less than or equal to) (<= 6 6) >#t

Comparison operator for all simple
datatypes (including numbers)

Scheme version

Equal

(equal? 4 4.0) -> #t (in WeScheme)
(equal? 4 4.0) -> #f (in SchemingBat)
(equal? 4 4.0) -> #f (in DrRacket)

(equal? #t #f) > #f

Logical conjunction operators

Scheme version

AND

(and #t #t) -> #t
(and #f #t) -> #f
(and (= 4 4) (> 4 5)) > #f
(and #t #t #f #t #t) > #f

OR (or Hf #t) > #t
(or #f #f) -> #f
(or(=4 4) (> 4 5)) -> #t
(or #f #f #f) > #f

NOT (not (= 4 4)) > #t

Decisions using “if”

The IF expression is a list with 4 parts:
(if test-part true-part false-part)

The test-part is an expression that must return #t or #f. For instance, these
three are valid tests:

(>43)
(<=x0)
(= x (+1y))

Or more complicated ones:

(and (>x 5) (< x 10)) ; is x between 5 and 10?
(or (<=x5) (>=x10)) ;is x not between 5 and 10?

In fact, any expression that asks a yes/no question is a valid test.

The true-part is an expression that will be evaluated if the test-part is True, and
its answer will be what the entire if-expression returns

Likewise, the false-part will be an expression that will be used (evaluated) if the
test-part is False, and that will be the answer.

Examples:

(if (>43) (+31) 18) > 4
that’s because the test-part, (> 4 3), is true and so we evaluate the true-part
(+3 1) and that’s our answer

(if(=56) (+31) 18) ->18
..because the test-part, which is (= 5 6), is false, and so the false-part, which is
18 is the answer

Functions making decisions

abs(x) ; the absolute value

(define (abs x)
(if (>=x0) ;test-part
X ; true-part
(* (-1 x)) ; false-part
)
)

