
 Racket Cribsheet – Version 10/4/21

Racket IDEA EXPLANATION Racket EXAMPLES

evaluation
Scheme will try to interpret the first element of a list inside

() as a function to perform, and the rest of the elements as
arguments to that function.

(+ 1 2)
(cdr L)
(if (= n 2) 12 18)

defining variables
define will create a memory location with the name of the

first argument, and store the value of the second argument in
that memory location

(define a 12) -> a=12
(define Harry (+ 10 2)) -> Harry=12
(define L '(+ 10 2)) -> L=(+ 10 2)

arithmetic operations

The ordinary 4 arithmetic functions will work with both
whole numbers and floating points and fractions, and will

usually take more that 2 arguments

abs is the absolute value function.

(+ 1 2) -> 3 (+ 1 2 3) -> 6
(- 5 3) -> 2 (- 5 3 1) -> 1
(* 5 2) -> 10 (* 5 2 3) -> 30
(/ 8 2) -> 4 (/ 7 2) -> 3 ½
(abs -3) -> 3 (abs -2.3) -> 2.3

integer arithmetic

operations

remainder returns the remainder of its first argument

divided by its second argument.

quotient divides its first argument by its second, and

ignores the remainder

For positive values, modulo works the same as

remainder.

(remainder 13 5) -> 3
(quotient 13 5) -> 2

 compound

expressions Lists within lists are evaluated from inside to outside
(+ (* 3 4) 2) -> 14
(remainder (quotient 543 10) 10) -> 4
(quotient (remainder 543 10) 10) -> 0

functions (without

lambda)

Functions can be defined with one or more arguments. The

argument names can be arbitrarily chosen, as long as they

match the use of that argument inside the function body.

(define (square n) (* n n))
(define (square bleep) (* bleep bleep))

functions (with

lambda) Another form of function definitions uses the Greek letter
lambda (as λ or lambda).

(define square (λ (n) (* n n)))
(define square (lambda (n) (* n n)))

relational operators These operators compare numerical values and return #t or
#f

(= 12 13) -> #f
(> 4 2) -> #t
(>= 4 (+ 1 3)) -> #t
(< 1 2 3) -> #t
(<= 1 2 0) -> #f

conjunctions and, or and not combine several logical expressions into

larger logical (boolean) expressions

(and (= 4 4) (> 4 5)) -> #f
(or (= 4 4) (> 4 5)) -> #t
(not (= 4 4)) -> #f

if
Make decisions with if. An if-list always has 4 elements:
(if test-part true-part false-part)

The "if-list" then returns the value of its true-part or its false-

part.

(if (= 12 13) 14 (+ 1 2)) -> 3
(if (< 12 14) 14 (+ 1 2)) -> 14

cond

Multi-decision lists can be composed with cond, which has

any number of clauses, each with a test and a result. The
clauses' tests are evaluated one after the other until one of the

tests is true, then that clause's result is immediately returned
as the cond list's value. An else clause may be included as

the last clause and will be activated if all of the other clauses's
tests are false.

(cond
 ((> grade 100) "Extra credit")
 ((and (>= grade 65) (<= grade 100)) "Pass")
 (else "Fail")
)

functions with

decisions

(define (PrintGrade num)

 (if (> num 100)

 “Extra credit”

 (if (>= num 65) “Pass” “Fail”)))

(define (PrintGrade num)
 (cond
 ((> num 100) "Extra credit")
 ((and (>= num 65) (<= num 100)) "Pass")
 (else "Fail")
)
)

recursive functions These are functions with call themselves.

(define (factorial n)

 (if (<= n 1) 1

 (* n (factorial (- n 1)))))

